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ABSTRACT

The flutter analysis of modern aircraft search for the lowest (critical) flutter speed under given conditions
and the variation of the critical flutter speed with certain system parameters, however static tests and
ground vibration tests performed on prototypes show existence of structural nonlinearities that result in
LCO. The harmonic linearization and the continuation method, described in the paper, have been
successfully used to LCO prediction based, on authors previous experience with application of a
continuation method to the flutter solution for a two degree of freedom profile with non-linear pitch
stiffness, and a sailplane with nonlinear controls of flaps, ailerons and elevator [10,28,22]. The “stiff
wing” flutter model, supported by the mechanical system that allows for independent movement and
simulation of nonlinear stiffness in “plunge” and “pitch”, has been used in wind tunnel LCO tests. The
nonlinearities in experiment generated electromechanically have given a possibility to perform effective
investigation of the influence of different nonlinear characteristics on LCO.  The tests have been
performed at the Low Turbulence Wind Tunnel in the Institute of Aviation in Warsaw [15,23].
Comparison of LCO calculation with continuation approach against wind tunnel results for 2D flutter
model with nonlinear stiffness in “plunge” and “pitch” are presented in the paper.

1. INTRODUCTION

             In the design of modern aircraft many computer hours are consumed on calculations of aeroelastic
problems. The most important of them are flutter analysis. The flutter analysis is therefore concerned to a
search for the lowest (critical) flutter speed under given conditions, and the variation of the critical flutter
speed with certain system parameters. Static tests and ground vibration tests carried out on prototypes
confirm existence of both distributed and concentrated structural nonlinearities. The effect of distributed
nonlinearities on the vibration mode shapes can mostly be regarded as negligible. Concentrated
nonlinearities occur locally in control mechanisms or in connections between aircraft parts. Nonlinearities
of this type are indicated in static tests on the force-deflection diagrams or in ground vibration tests on the
frequency-amplitude diagrams [1,2]. That effects in additional complications in analysis, because flutter of
a non linear system may be of the limited amplitude but on the other hand a non linear system that is stable
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with respect to small disturbances may be unstable with respect to large ones. The nonlinearities in flutter
calculations can be handled either by direct integration of equations of motion in the time-domain or by
iterative search in frequency-domain [2,4]. In both methods finite amplitude limit-cycle solution are the
targets. For systems with concentrated structural nonlinearities the harmonic linearization [5] method is
applied and equivalent stiffness and damping are obtained for a given constant-amplitude harmonic
motion. Earlier works [2,4] confirm the efficiency of iterative process for systems having two
nonlinearities. The iteration method is based on the assumption that the aircraft motion is harmonic.
Consequently, all nonlinearities of the structure must be harmonically equivalent [10] because the
classical, linear method is used in each iteration step. One of recent developments in numerical analysis is
a  class  of continuation methods [11]. Continuation method can be successfully applied to flutter cal-
culation of systems without structural nonlinearities [12]. Application of a continuation method to the
flutter analysis for systems with interacting structural nonlinearities is presented on examples of two
degrees of freedom profile with non-linear plunge and pitch stiffness. LCO calculations are compared with
wind tunnel experiment for 2D flutter model.

2. FLUTTER EQUATIONS

             The methods well known in practical flutter analysis are based on the solution of flutter equation
in the frequency domain. The fundamental assumption is that the motion of an aircraft is time-harmonic,
which is strictly satisfying only on a boundary between stable and unstable motion. The neutrally stable
aircraft motion is described by the flutter equation

 (1) [ ] [ ]( ){ } ( )[ ]{ }- + =w rw2 2M K q A k q

          where: { }q     - coordinates vector,

[ ]M    - mass matrix,

[ ]K     - stiffness matrix (complex),

( )[ ]A k  - aerodynamics matrix (complex),

                                   which elements are functions of the reduced frequency k b V= ×w /

w  - circular frequency,

b  - reference length,

V  - free-stream velocity,

r  - free-stream density.

          The complex stiffness matrix

[ ] [ ] [ ]K C i G= +  is a sum of a stiffness matrix[ ]C  and a structural damping matrix [ ]G

          The flutter equation (1) (for an assumed value of reduced frequency k ) is a system of homogeneous
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linear equations with the parameter w .

 (2) [ ] ( )[ ]( ) [ ]( ){ }w r2 0M A k K q+ - =

          Non trivial (complex) solution vector { }q  can be obtained with accuracy to constant multiplier and
should be normalized (for example to unit length and assumed phase)

(3) { }{ }q qH = 1

(4) ( )Im q n = 0

          where: ( )Im q n  - imaginary part of n-th element of { }q  and { }qH  - hermitian transpose of { }q

The assumed value k and the (real) parameter w ,  for  which  a  solution  of  (2)  exist,  must  satisfy  the
equation

(5) k b
V

=
×w

When a proper combination of k -w  is found, then the flutter problem is solved and the flutter speed V ,
flutter frequency w   and the flutter mode { }q  are evaluated.

3. CLASSICAL SOLUTION

             The classical way to find a solution of the flutter equation is the transformation of (2) to an
eigenvalue problem

(6) ( )[ ]{ } { }D k q q= l

          where

 (7) ( )[ ] [ ] ( )[ ]( ) [ ]D k M A k K= +
-

r
1

          and

 (8) l
w

=
+

2

1 ig

          where g is the artificial damping which must be (in calculation) added to, or subtracted from the
dynamic system (an aircraft) to preserve the harmonic motion (V-g method).

          From (8) result
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(9) w
l

l
=

Re
; g =

Im
Re

l
l

;     and V b
k

=
×w

;

          The eigenproblem (6) is solved for a set of reduced frequencies k  and  (9)  are  interpreted
(graphically) on V g-  and V - w  diagrams. Critical conditions (neutrally stable motion) correspond  to
g = 0 . The lowest value V  for g = 0  is the critical flutter speed VF .

4. CONTINUATION METHOD

           Continuation methods are predictor corrector techniques for the solution of systems of non linear
equations which are functions of several parameters, defined over a specified range. Typically there is one
more unknown than equations. One of unknowns is chosen as the continuation parameter, and is fixed
during the corrector phase in order to give the same number of equations as unknowns. For calculation
economy it is important to pick the largest possible predictor step while maintaining convergence in the
corrector phase.

             The flutter equation (2) ( V g-  version) with the normalization equations (3,4) completed by (5),
form the set of 2n+3 real equations

(10) [ ] ( )[ ]( ) ( )[ ]( ){ }w r2 1 0M A k ig K q+ - + =

{ }{ }q qH - =1 0

( )Im q n = 0

V b
k

-
×

=
w 0

          with 2n+4 unknowns { }q , w , g , k , V , where n is the number of coordinates (degrees of
freedom) in the equation (2).

             If the structure of aircraft is non linear then the stiffness matrix [ ]K  depends on { }q  or more

physically [ ]K  depends on amplitudes of aircraft vibration. Critical flutter conditions are in this case
function of the vibration amplitude, which is a new parameter (new unknown) in equations

(11) [ ] ( )[ ]( ) ( ) ( )[ ]( ){ }w r2 1 0M A k ig K q q+ - + =

{ }{ }q q EH - = 0

( )Im q n = 0

LCO Calculations Compared with Wind 
Tunnel Experiment for 2D Flutter Model  

17 - 4 RTO-MP-AVT-152 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



V b
k

-
×

=
w 0

          where: E  - amplitude level proportional to a total mechanical energy in harmonic vibrations,

( )[ ]( ) ( )[ ]Re K q C q=  - stiffness matrix.

          The system of 2n+3 equations (11) has now 2n+5 unknowns { }q , w , g , k , V , and E . It means
that the one of parameters (the one of unknowns) must be fixed. For example if g = 0  during calculations,

then continuation solution gives the critical flutter conditions VF , wF , { }qF ) dependent on vibration
amplitude level E  (limit cycle solution).

5. HARMONIC BALANCE

Previously described methods are based on the assumption that the aircraft motion is time-harmonic.
Consequently, all nonlinearities of the structure must be harmonically equivalent. The effective tool in this
case is the linearization method based on the principle of harmonic balance [5,6] (harmonic linearization),
which provides equality of amplitude of linearized system and the amplitude of the fundamental harmonic
component of nonlinear system at b b w= cos t . For the nonlinear force-deflection function  the  real
characteristic M( )b  (for  example: hinge moment - control surface deflection)  is  replaced  by  the
equivalent one

(12) ( )( )M t C iG e i t( ) Re= +b w

defined for the time-harmonic motion b b w= ei t . Real control surface deflections are:

(13) b b b wr t= =Re( ) cos

Equivalent stiffness and damping coefficients, C and G, respectively are obtained by balancing the
fundamental harmonic term of the Fourier series expansion of M r( )b  during a single oscillation period.
Harmonically equivalent stiffness

(14) C( M t t d tb
pb

b w w w
p

) ( cos ) cos ( )= × ×ò
1

0

2

and damping

(15) G M t t d t( ) ( cos ) sin ( )b
pb

b w w w
p

= × ×ò
1

0

2

are functions of the amplitude b  in harmonic oscillation. Equivalent characteristic (describing function)

(16) M C t G tr( ) ( cos sin )b b w w= -
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gives, after transformation, the following equation:

(17) M M Mr
C

r
G

r( ) ( ) ( )b b b= +

where: M C(C
r r( ) )b b b=  - linear function of b r ,

M GG
r r( ) ( )b b b b= - -2 2  - hysteresis function of b r .

The nonlinear force-deflection function is replaced after linearization by an equivalent one with elliptical
hysteresis. Energy dissipated in one period of oscillation is kept unchanged for the equivalent
characteristics

(18) E M d Gd r r= × =ò ( )b b p b2

The conditions necessary for the application of harmonic balance are  discussed  in  detail  by  Popow  &
Platow [5] and Shen [6]. The integrals (14,15) can by calculated analytically only for simple M r( )b
functions. Typical examples of analytical describing functions are presented in [6,7]. For the force-
deflection characteristics obtained from tests, the only way to calculate integrals (14,15) is to use
numerical method. Practical tests conducted on aircraft, generally allow for estimation of nonlinearities
such as: back-lash, solid friction, spring correctors and deflection stops. If nonlinearities are also found to
be dependent upon velocity of the control deflection then the tests are more complex and therefore rarely
performed on prototypes of aircraft.

6.  THE SET-UP DESCRIPTION

6.1 The model suspension system
The Low Turbulence Wind Tunnel at Institute of Aviation has been chosen to prove the

functionality of the new LCO model with computer control of a spring system [24]. This tunnel has a
close rectangular test section with size 0.5x0.65 m. Maximum flow velocity is 85 m/s and can be
controlled in whole range with great accuracy (dynamic pressure accuracy up to 0.1 mm H2O). It has high
stability of flow velocity, which is necessary in the LCO measurements, when even minor changes in
velocity can cause changes in amplitudes of flutter modes and transient effects. It is particularly important
in the most interesting cases for velocities close to the critical flutter speed or in range of LCO modes. The
dimensions  and  kinematical  scheme,  of  flutter  model  have  been  set  to  perform  the  tests  in  the  most
suitable conditions for validation.

   The NACA0012 profile has been chosen for the uniform wing cross section. It is probably the most
frequently used profile for basic investigation of  non-stationary aerodynamics. The aerodynamic surface
span of the wing is 0.5 m and the chord 0.2 m. It is assumed that measurement range of velocity is  from
15 m/s to 40 m/s and  flutter speed for linear portion of stiffness is about 20 m/s  and the  frequency range
from 5 to 10 Hz, what results in  the non-dimensional frequency factor k from 0.15 to 0.3.

The two degrees of freedom flutter model (Fig. 1, 2, 3, 4) was designed to obtain possible low mass and
was built of carbon composite excluding joints. The principal goals of the experiments were to prove the
effectiveness of the new system of tuning the nonlinear stiffness characteristics of plunge Kh and pitch
degrees of freedom Ka.
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                                       Fig. 1 The design schema                               Fig.  2 The view of the LCO model

Great flexibility of possible characteristics both with hardening and softening non-linear rule has been
obtained by application of the electro-dynamic exciters as the stiffness generators. The exciters were
activated by the computer controlled system which produces the programmed displacement-force relation
in real time.

Fig. 3  The overall view of the wind tunnel                Fig. 4  The model suspension system
           test section

Using this concept any functional dependence between translation (or rotation) and the exciter force can
be easily generated. Also the negative damping forces can be hypothetically produced. The only limitation
is the stability of the control circuit where small damping is maintained by means of adjusting the resistor
in the exciter coil circuit. The results of the resonance testing (see Table 1) show that the modes of interest
i.e. plunge (translation) and pitch (rotation) are well separated from the other vibration modes. No
interaction with higher frequency modes should be expected.
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No
   of  event

Mode name f
[Hz]

Dumping
coefficient

mod1031 Plunge (bending) 4.65 0.052
mod1032 Pitch (torsion) 5.71 0.042
mod1004 Vertical bending of arm 30.6 0.011
mod1001 Torsion of arm – low position of the node line 31.9 0.009

Table 1. The results of Ground Vibration Test of the set up.

Electrodynamics exciters are used as springs (see schema on Fig. 5).  Dependence between displacement
and force is controlled by the digital computer. In the test set up 12 bits A-D and D-A converters were
used. The dependence between displacement and force can be easily digitalized – only 4098 element
vector per channel are needed. The control program at the first step calculate matrix of factors, and in the
second step in steering loop it doesn’t calculate force factor – it simply takes it from the vector.

6. 2 Correction of the System Characteristics.
The main problem was to obtain proper characteristic of “electronic spring” (Fig. 9). The available
electrodynamics exciters are nonlinear. The force factor (dependence of force upon the voltage on
entrance of power amplifier) is depending on coil position (Fig. 5, 6). For each of exciter used in tests the
measurements of dependence between voltage on power amplifier input and force on the coil were done.
The measurements were repeated for several positions of coil. For example results of the measurements
for the two positions of coil (5.05 mm and 14.35 mm) are presented on Fig. 7. To adjust the characteristic,
the vector of the correction factors has been established and used on each step. The corrected exciter
characteristics have been shown on Fig. 8.

0

10

20

30

40

50

60

70

-15 -10 -5 0 5 10 15

[mm]

[N
/1

00
%

]

Fig. 5  The force factor - coil deflection relation
of the EX 303 exciter.

EX303 - coil suspension

-10

-5

0

5

10

-15 -10 -5 0 5 10 15

mm

N

Fig. 6 The force-displacement characteristic  of
the EX 303 exciter (control off).

Exciter EX303

0

20

40

60

80

0 0,2 0,4 0,6 0,8 1 1,2

gain

[N
] Measurments

Regresion

Exciter EX303

0

20

40

60

80

0 0,2 0,4 0,6 0,8 1 1,2

gain

[N
] Measurment

Regresion

Fig. 7  The dependence between amplifier gain (1 = 100%) and exciter force for selected coil
positions: 5.05 mm (left) and 14.35 mm (right).
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Fig. 8. The dependence between  force and displacement of coil
(with the digital correction).

Amplifier
HBM ML 55

F(x)
x

Power amplifier
PRODERA A-436

D-A converter
Keithley
DAS 1601HC

Digital
computer
PC 486

A-D converter
Keithley
DAS 1601HC

Displacement
 transducer HBM W-20

Electrodynamic exciter
PRODERA 20JE20

Fig. 9. The block diagram of the “electronic spring” (one channel).

6.3 Tuning nonlinearities.
The experimentally measured sets up parameters (reduced to unit span of the wing) are as follow:

Kh0 = 2170 [N/m], bh = 20000 [1/ m2 ],

Ka0 = 24.10 [Nm/rd], ba= 800 [1/ rd2 ].

Most of wind tunnel tests were performed for cubic nonlinearities:

(19) Kh = Kh0 (1 + bh h2)

(20) Ka = Ka0 (1 + ba a2)

and characteristics of “electronic springs” with this type of nonlinearity is shown on Fig. 10.
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Fig.  10  The comparison between required (fine line) and measured (dots) characteristic of
nonlinear spring. Degrees of freedom – plunge (left) and pitch (right).

7. LCO CALCULATIONS COMPARED WITH WIND TUNNEL EXPERIMENT

The following parameters have been derived from the measurements during the tests:

• the dependence the amplitude of LCO on the velocity,

• the phase shift between the modes of vibration plunge (h) and pitch (α).

For each flow velocity vibrations of model were excited by the step of plunge or pitch. The time histories
were recorded. From this data the frequency and the amplitude of the vibration mode has been extracted.

Harmonic balance and a continuation method were applied to the flutter solution of two degrees of
freedom wing [25], suspended in the wind tunnel by non-linear (cubic) springs (Fig 1, 2, 3, 4) in plunge
and  pitch.  The  PITCON  package  of  FORTRAN  subroutines  [11]  was  used  to  solve  the  system  of
equations (11). PITCON was designed at University of Pittsburgh to be a general-purpose package for the
solution of undetermined system of non linear equations in which the number of equations is one less than
the number of unknowns. Calculation model of the wing is shown on Fig. 11.

V Kaa

średnie położenie profilu

K h
h

ab
sbb

b

środek ciężkości

Fig. 11 Two-dimensional wing (airfoil) suspended by plunge and pitch springs

Undeflected position
of airfoil centerline

Center of gravity
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Among others the influence of following parameters on LCO was tested during wind tunnel experiment:

• rotation axis location for one nonlinearity in plunge (test case 1,2 and test case 5,5a),

• rotation axis location for nonlinearities in plunge and pitch (test case 7 and test case 16),

• one nonlinearity in pitch (test case 13),

• rotation axis location for linear model (test case 6 and test case 14),

The stiffness data of the wing tested in the wind tunnel are listed in the Table 2

Table 2

Experiment a Kh0 [N/m] bh [1/m²] Ka0 [Nm/rd] ba [1/rd²] gh, ga

Test case 1, 2 -0.5 2170 20000 24.10 0 (0.025, 0.050, 0.100)

Test case 5,5a -0.6 2170 20000 24.10 0 (0.025, 0.050, 0.100)

Test case 7 -0.6 2170 20000 24.10 800 (0.025, 0.050, 0.100)

Test case 6 -0.6 2170 0 24.10 0 (0.025, 0.050, 0.100)

where: a – location of the rotation axis,

Kh0 – (linear) plunge stiffness, Ka0 – (linear) pitch stiffness,

bh, ba – nonlinearity factors, gh, ga – artificial damping

The mass data reduced to the wing span are shown in Table 3.

Table 3

a M[kg/m] S[kgm/m] I[kgm²/m]

-0.5 2.665979 0.0276580 0.0187950

where: M – mass,

S – mass static moment relative to the wing rotation axis,

I – mass moment of inertia relative to the wing rotation axis.
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7. 1 Test case 1, 2 (nonlinearity in plunge; a = -0.5)
Calculation results compared with the wind tunnel tests are shown on Fig. 12, 13.
Test results are indicated by▲ and +.  Calculation results are indicated by solid lines.

0.00 10.00 20.00 30.00 40.00
V [m/s]

0.0000

0.0040

0.0080

0.0120

0.0160

h [m]

T1.1_h_g
K_h = 2170; beta_h = 20000
K_a = 24.10; beta_a = 0.00

a=-0.5

g_h =0.025; g_a = 0.025

g_h = 0.050; g_a = 0.050

g_h = 0.100; g_a = 0.100

obl. AUTO [2]

exp. seria1

exp. seria2

 Fig. 12  LCO - plunge
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Fig. 13 LCO - pitch

Examples of the time history and the phase shift are shown on Fig. 14 and Fig. 15.

0.00 1.00 2.00 3.00
time [sec]

-0.20

-0.10
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0.10

0.20

ampl.
[m,rd]

q115p2; V=13.565m/s
beta_h=20000; beta_a=0

a=-0.5

h
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Fig. 14  Plunge and pitch amplitudes (exp.)
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-0.20

-0.10

0.00

0.10

0.20
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q115f2
V=13.565m/s

 Fig. 15  LCO (wind tunnel experiment)

The graphs were built based on the measured vibration amplitudes during the stable LCO for each wind
velocity. In „Test case 1, 2” vibration were measured for more than 40 velocities.   Comparison of LCO
obtain by calculations with experiment is very good for plunge and acceptable for pitch.

LCO Calculations Compared with Wind 
Tunnel Experiment for 2D Flutter Model  

17 - 12 RTO-MP-AVT-152 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



7. 2 Test case 5, 5a (nonlinearity in plunge; a = -0.6)
Calculation results compared with the wind tunnel tests are shown on Fig. 16, 17.
Test results are indicated by▲ and ■.  Calculation results are indicated by solid lines.

0.00 10.00 20.00 30.00 40.00
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Fig. 16 LCO - plunge
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Fig. 17 LCO - pitch

Similar to “Test case 1, 2”  the graphs were build based on the measured vibration amplitudes during the
stable LCO for each wind velocity.  Two flutter modes with different phase shift between plunge and pitch
were obtained in tests.

Examples of the time history and the phase shift in first mode are shown on Fig. 18 and Fig. 19.
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Fig. 18 Plunge and pitch amplitudes
(wind tunnel experiment – first mode)
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Fig. 19 LCO
(wind tunnel experiment– first mode)
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Examples of the time history and the phase shift in second mode are shown on Fig. 20 and Fig. 21.
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Fig. 20 Plunge and pitch amplitudes
(wind tunnel experiment – second mode)
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Fig. 21 LCO
(wind tunnel experiment – second mode)

In the first mode the phase shift between plunge and pitch in LCO is approx. 90°  as shown on Fig. 19
while in the second mode is more than 270°  as shown on Fig. 21. Comparison of LCO obtain by
calculations with experiment is very good for plunge and acceptable for pitch.

7. 3 Test case 7 (nonlinearities in plunge and pitch; a = -0.6)
Calculation results compared with the wind tunnel tests are shown on Fig. 22, 23. Test results are
indicated by ▲ and ●.  Calculation results are indicated by solid lines.
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 Fig. 22 LCO - plunge
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Examples of the time history recorded during wind tunnel tests are shown on Fig. 24, 25 and Fig. 26.
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Fig. 24 Plunge and pitch amplitudes (exp.)
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Fig.  26  The measured plunge and pitch for nonlinear LCO [24].

Comparison of LCO obtain by calculations with experiment is qualitative agree for plunge and pitch but
amplitudes measured in experiment are approx. 40% lower than calculated ones. Oscillation amplitudes on
Fig. 24, 26 show asymmetry relative to the wing mean position during tests and the vibration beat.
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7. 4 Test case 6 (linear model; a = -0.6, bh = 0 and ba = 0)
Calculation results compared with the wind tunnel tests are shown on Fig. 27.
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Fig. 28 Plunge and pitch amplitudes (exp.)

Examples of the time history recorded during wind tunnel tests are shown on Fig. 28 and Fig. 29

0 /0 V = 0 m /s

-8

-6

-4

-2

0

2

4

6

0 1 2 3 4 5 6

[s ]

[d
eg

,m
m

]

alf a
h

0 /0 V = 2 0 .8 m /s

-1 0
-8
-6
-4
-2
0
2
4
6
8

1 0

0 1 2 3 4 5 6

[s ]

[d
eg

,m
m

]

a lf a
h

0 /0 V = 1 5 .6 m /s

-8
-6
-4
-2
0
2
4
6
8

0 1 2 3 4 5 6

[s ]

[d
eg

,m
m

]

alf a
h

0 /0 V = 2 1 .3 m /s

-1 0
-8
-6
-4
-2
0
2
4
6
8

1 0

0 1 2 3 4 5 6

[s ]

[d
eg

,m
m

]

a lfa
h

Fig. 29 The measured plunge and pitch for linear case [24]

In “linear” wind tunnel tests  LCO was measured. The “linear flutter” was not obtained in experiment.
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8. CONCLUSIONS

1. Calculation performed for 2D model based on the harmonic balance and the continuation method show
qualitative agreement with wind tunnel experiment.

2. For 2D model with only plunge nonlinear spring, calculations are also quantitatively compatible to
wind tunnel experiment.

3. For only pitch nonlinear spring frequency beat and “noise” in main oscillations have been
experimentally obtained. Calculation are qualitatively compatible to wind tunnel experiment.
Oscillation amplitudes measured in experiment are 20% to 40% lower than calculated.

4. Disagreements between experimental results and calculations as well as non detected “linear flutter”
during wind tunnel tests can result from:
· application of harmonic-balance,  which is probably to far-going simplification,
· non identified nonlinearities existing in the test stand.

5. Wind tunnel tests (with controlled nonlinear stiffness) are expensive and difficult to perform.
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